# Creating word-word graph
G = nx.Graph()
for token_list in tqdm(data.tokens):
for edge in itertools.combinations(token_list, 2):
w = G.get_edge_data(*edge, default={'weight':0})['weight'] + 1
G.add_edge(*edge, weight=w)
G = nx.convert_node_labels_to_integers(G, label_attribute='label')
print(nx.info(G))
deg_med = np.median([deg for node, deg in G.degree(weight='weight')])
print(f'Median degree: {deg_med}')
Name: Type: Graph Number of nodes: 1448 Number of edges: 66988 Average degree: 92.5249 Median degree: 74.0
# Degree dist
hist = nx.degree_histogram(G)
plt.figure(figsize=(16,6))
plt.bar(range(len(hist)), hist)
plt.xlabel("Degree")
plt.ylabel("Occurrence")
plt.grid()
plt.show()
# Tweet-token ratio
filters = (data.tokens.str.len() >= 6)
print(f'Number of tweets: {len(data[filters])}')
print(f'Number of tokens: {data[filters].tokens.str.len().sum()}')
Number of tweets: 1174 Number of tokens: 14770

level=1
hsbm_model.topics(l=level, n=10)
{0: [('women', 0.015546639919759278),
('movement', 0.014844533600802408),
('say', 0.011634904714142427),
('like', 0.011334002006018053),
('get', 0.011133400200601806),
('peopl', 0.008625877632898696),
('one', 0.008224674022066199),
('stori', 0.007321965897693079),
('think', 0.00712136409227683),
('make', 0.00712136409227683)],
1: [('assault', 0.05037593984962406),
('era', 0.04360902255639098),
('court', 0.04360902255639098),
('survivor', 0.039097744360902256),
('first', 0.035338345864661655),
('watch', 0.03007518796992481),
('high', 0.02706766917293233),
('case', 0.02556390977443609),
('tri', 0.02556390977443609),
('convict', 0.021052631578947368)],
2: [('sexual', 0.062146892655367235),
('men', 0.03615819209039548),
('need', 0.02711864406779661),
('harass', 0.026741996233521657),
('victim', 0.02448210922787194),
('abus', 0.021845574387947268),
('come', 0.021468926553672316),
('man', 0.01770244821092279),
('violenc', 0.01770244821092279),
('power', 0.01657250470809793)]}
---------------------------------------- TOPIC: 0 ----------------------------------------
@othermatt2 hahah my term paper is actually about using media to cultivate the practice of faithful presence in the midst of the #metoo & #churchtoo movements.
@laurahday @JayneBYoung @magenta_17 @cash4questions2 @topwak @SkyNews @BBCNews @DailyMirror @UKLabour @jeremycorbyn 2) I have my eyes wide open. All I'm seeing is your lively smile right now (that was a bit of humour). Don't go all #MeToo over it lol.
@susanthesquark Lol... Its a dumb observation that yout naive or too dumb to realize.... Your getting ratioed for good reason... Ever heard of #MeToo
@BiggFan77 #Dumboleena was coined for a reason. #ShehnaazGill is in task. To take max footage from HMs, to be seen. #Shehnaaz says "She can't be fake & talk to HMs who don't like her, Sid was the only one who she could take footage from"
Accused #Metoo cursed & dumbo was flirting with him.
---------------------------------------- TOPIC: 1 ----------------------------------------
The Superior Court ruling was being closely watched because Cosby was the first celebrity tried and convicted in the #MeToo era. https://t.co/avPRTAbrDa
15.08 ongoing attempt to murder GE #GE #FCPA #CORPGOV whistle-blower & #MeToo survivor Seema Sapra in Delhi High Court @realDonaldTrump @FBI @POTUS @gurgaonpolice @DelhiPolice @CPDelhi @StateDept @WhiteHouse @TheJusticeDept @HMOIndia @AmitShah @PMOIndia @narendramodi https://t.co/kWwbc3sk8t
0.12 Attempt to murder GE #GE #FCPA #CORPGOV whistle-blower & #MeToo survivor Seema Sapra at Gate 8 Delhi High Court @realDonaldTrump @FBI @POTUS @gurgaonpolice @DelhiPolice @CPDelhi @StateDept @WhiteHouse @TheJusticeDept @HMOIndia @AmitShah @PMOIndia @narendramodi https://t.co/xf3da9t2HY
UP16BC7271 0.02 Attempt to murder GE #GE #FCPA #CORPGOV whistle-blower & #MeToo survivor Seema Sapra at Gate 8 Delhi High Court @realDonaldTrump @FBI @POTUS @gurgaonpolice @DelhiPolice @CPDelhi @StateDept @WhiteHouse @TheJusticeDept @HMOIndia @AmitShah @PMOIndia @narendramodi
---------------------------------------- TOPIC: 2 ----------------------------------------
PWN men and PWN the WPRDL, with proprietary insights, from the N-biCOMACOPO "male dual loyalty" #gaming algorithm. Reverse engineered by the AIA. #ReadMyTweets #AI #MAGA #MeToo #IoT #DemDebate Eli Manning #EaglesvsGiants #fintech #infosec #Joker #hacking
Damn You @GloriaAllred, Damn You @LisaBloom, Damn You #JudgeONeill, Damn You #KevinSteele! 😤👎👎
Damn You #TimesUp and #MeToo! #FirstThem! #MuteTimesUp and #MuteMeToo! I AM VERY PISSED! #BillCosby didn't deserve it! #FreeCosby #BillCosbyIsInnocent! https://t.co/6jAeVizmlW
"Community problems deserve a community response. My response was #metoo." #IHIForum
IT'S THE MEN, STUPID. This is algorithmically identical to #domesticabuse model—the ENDLESS "play by play" over PREPOSTEROUS MEN—a deep deep spiraling "male dual loyalty" #gaming dynamic. #ReadMyTweets #AI #MAGA #MeToo #IoT #DemDebate Eli Manning #EaglesvsGiants #fintech #infosec https://t.co/JUiZAGLg2L
level=1
lda_models[level].show_topics(num_topics=-1, num_words=7, formatted=False)
[(0,
[('say', 0.01029575),
('women', 0.0095762685),
('men', 0.007937355),
('movement', 0.007825186),
('stori', 0.0073716524),
('see', 0.0059436252),
('right', 0.005807654)]),
(1,
[('sexual', 0.019692097),
('women', 0.017512914),
('movement', 0.012585554),
('like', 0.010749188),
('say', 0.010251208),
('get', 0.009469597),
('assault', 0.008004609)]),
(2,
[('would', 0.009614601),
('get', 0.009072569),
('know', 0.0076741227),
('movement', 0.007480507),
('like', 0.0064201523),
('new', 0.0060390034),
('one', 0.0057884566)])]