$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
plots, labels = array([A, B, C, D]), ["A", "B = A+$\pi/6$", "C = A+$\pi/2$","D = Const."]
plt.title("Signals (Fs = 8kHz, f = 5 Hz)")
plt.plot(x, plots.T)
plt.grid()
plt.legend(labels, loc = 'best')
plt.xlabel('Time (s)')
plt.ylabel('Signal');
print("Pearson correlation| A-B:", round(pearsonr(A,B)[0],4), "A-C:",
round(pearsonr(A,C)[0],4), "A-D:", round(pearsonr(A,D)[0],4))
Pearson correlation| A-B: 0.866 A-C: 0.0 A-D: 0.0
print("The entropies| A: ", round(entropy1(A),4), " B: ",
round(entropy1(B),4), " C: ", round(entropy1(C),4), " D: ", round(entropy1(D),4))
print("Mutual information| A-B:", round(mutual_info_score(A, B),4), "A-C:",
round(mutual_info_score(A,C),4), "A-D:", round(mutual_info_score(A,D),4))
print("As a reference| A-A:", round(mutual_info_score(A,A),4), "B-B:",
round(mutual_info_score(B,B),4), "C-C:", round(mutual_info_score(C,C),4))
The entropies| A: 8.7128 B: 8.8416 C: 8.7617 D: 0.0 Mutual information| A-B: 8.5825 A-C: 8.4901 A-D: 0.0 As a reference| A-A: 8.7128 B-B: 8.8416 C-C: 8.7617
grid()
plot(correlate(A,B))
plot(correlate(A,C))
plot(correlate(A,D))
legend(["A-B", "A-C", "A-D" ], loc = 'best')
xlabel('Data point');
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
plt.plot(x, array([A,B]).T)
plt.xlim(0.4, 0.42)
plt.grid()
plt.xlabel("Time [sec]")
plt.ylabel("Signal")
plt.legend(["A (1kHz)", "A + B (1.5kHz) + noise"], loc = "best");
plt.semilogy(f,c)
plt.grid()
plt.xlabel("Frequency [Hz]")
plt.ylabel("Coherence");
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
- Phase Slope Index (PSI) - by Nolte et al. (2008) :
$$
\tilde{\Psi}_{ij} = \Im \left( \sum_f C_{ij}^* \left( f \right) C_{ij} \left( f + \delta f \right)\right)
$$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
As George Sugihara mentioned (Sugihara et al. (2012)):
However, as Granger realized early on, this approach may be problematic in deterministic settings, especially in dynamic systems with weak to moderate coupling. [...]
That is to say, in deterministic dynamic systems (even noisy ones), if X is a cause for Y, information about X will be redundantly present in Y itself and cannot formally be removed from U—a consequence of Takens’ theorem.
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$${\begin{aligned}{\frac {\mathrm {d} X}{\mathrm {d} t}}&=\sigma (Y-X),\\[6pt]{\frac {\mathrm {d} Y}{\mathrm {d} t}}&=X(\rho -Z)-Y,\\[6pt]{\frac {\mathrm {d} Z}{\mathrm {d} t}}&=XY-\beta Z.\end{aligned}}$$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
Information dimension introduced by Rényi (1959): $$ d_X = \lim_{N\rightarrow\infty} \frac{1}{\log N} H\left( \left[X\right]_N\right), $$
Since $X$ is discrete and finite, if the variable lives in a $D$ dimensional space, a proper estimate needs at least $10^D-30^D$ sample points. An approximate form :
$$ d_{X, 1/N} = \frac{1}{\log N} H\left( \left[X\right]_N\right). $$Assumption 1: time series are stationary. Local intrinsic dimenson:
$$ D_X\left(x\right) = \lim_{r\rightarrow 0} \frac{1}{\log r} \log P \left( X \in B\left(x,r \right)\right), $$The intrinsic dimension:
$$ d_X = D_X = E\left( D_X\left( X \right) \right) $$$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
Assumption 2: the embedded manifolds are homogeneous with respect to (the existing) dimension. Local intrinsic dimension estimates:
$$ \hat{D} \left(x \right)_r = \frac{1}{\log r} \log \left| N \left(x,r \right) \right|. $$Global dimension estimate:
$$ \hat{D}_{X,r} = \frac{1}{n} \sum_{i=1}^n \hat{D} \left(x_i \right)_r $$For the $k$-th nearest neighbour, one shall calculate the dimension from the distance $r(x,k) = d(x, X^k(x))$. In this setting, the resolution is:
$$ r^D \approx \frac{k}{n} $$$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$
$\textit{Kristóf Furuglyás, Theoretical Physics Seminar, 2019 Fall }$