Mismatch Negativity and the Connectivity of the Brain

- $\textit{Do we predict our future?}$ -

Kristóf Furuglyás, Eötvös Loránd University
Biophysics Seminar, 2019 Fall

elte_log wigner_log

Outline

table_of_cont

  • EEG signals and brainwaves
  • Event-related potential (ERP) signals
    and mismatch negativity (MMN)
  • Predictive coding
  • The HBP-Canon project
  • Summary

EEG signals and brainwaves

Electroencephalography (EEG)

eeg_example

  • Monitoring brain activity via
    electric potential
  • Change in ionic currents (Na, K, Ca)
  • Non-invasive or invasive
    (electrocorticography)
  • Main purposes: epilepsy,
    sleeping disorders, depth of anaesthesia
  • Evoked potentials (EP),
    event-related potentials (ERP)

Brainwaves

eeg_example

  • Rhytmic neural oscillations
    generated by the neaural tissue
  • First discovered in 1924 by Berger
  • Characterized by the frequency,
    amplitude and phase
  • Output is the mixture of all
  • Phase synchrony

ERP & MMN

eeg_example

  • Result of sensory, cognitive or motory event
  • Needs many trials and averaging $$ {\bar x}(t)={\frac {1}{N}}\sum _{{k=1}}^{N}x(t,k)=s(t)+{\frac {1}{N}}\sum _{{k=1}}^{N}n(t,k) $$
  • P300 = Positve peak after 300 ms AS
  • Fields of occurrence include:
    • AD/HD
    • Parkinson's disease
    • Multiple sclerosis
    • Obsessive-compulsive disorder
    • etc.

Mismatch negativity (MMN)

  • Component of ERP
  • Standard and deviant stimuli

    [s s s s s s s s s d s s s s s s d s s s d s s s s...]

  • Common base is the representation of our world

  • Memory trace or no memory neurons
mmn_example

Predictive coding

  • Brain generates hypotheses about the future
  • Repetition suppression (RS): reduction of neural response
  • Surprise enhancement (SE): prediction error
  • Ratio of the RS and SE
  • Equiprobable series

Short summary

mmn_comp

What we know

  • Brainwaves by the frequency
  • Mismatch negativity
  • Repetiton suppression and prediction error
  • Standard, deviant and equiprobable series

mmn_comp

What we do not know

  • Conditional MMN
  • Multiple inputs
  • Communication
  • Anaesthesia

The HBP-Canon project

mmn_comp

  • Swammerdam Institute for Life Sciences,
    University of Amsterdam
  • Rats and mice, auditory and visual
    stimuli (4 types)
  • Measured in auditory and visual
    corteces invasively (AL, V1)
  • 2 x 32 channels, 32 kHz sampling frequency
  • Appr. 500 GB of raw recordings
mmn_comp

Results

Raw average of Ab (V1)

mmn_comp

Raw average of Ab (AL)

mmn_comp

Comparison of responses (ch1 from V1)

mmn_comp

Comparison of responses (ch45 from AL)

mmn_comp

MMN types (ch1 from V1)

mmn_comp

MMN types (ch45 from AL)

mmn_comp

Sidenote

Coherency

The cross-spectrum $(S_{xy})$ of two temporal signals $(x,y)$ is the following : $$ \left< S_{xy} \left( f \right) \right> = \frac{2\Delta^2}{T} \frac{1}{K} \sum_{k=1}^K F_x^k \left(f\right) F_y^{k,*}\left(f\right), $$

where

  • $\Delta$ : timestep ($dt$)
  • $T$: length of a trial
  • $K$ : trials
  • $F_x^k$: Fourier spectrum

and the coherency:

$$ \kappa_{xy} \left( f\right) = \frac{\left| \left< S_{xy}\left(f\right) \right> \right|}{\sqrt{\left< S_{xx}\left(f\right)\right>\left< S_{yy}\left(f\right)\right>}}. $$

Total coherency map

mmn_comp

Coherency-difference averaged map

mmn_comp

Coherency-difference MMN map of V1

mmn_comp

Coherency-difference MMN map of AL

mmn_comp

Crosss-coherency-difference MMN map of V1 and AL

mmn_comp

#TODO

  • Group by other paramteres (freq, mmn, type, region)
  • Significance test
  • Compare to Fourier spectrum
  • Do for all possible experiments

Our group

  • Zsigmond Benkő: MTA junior researcher, Phd candidate
  • László Négyessy: Senior Research Fellow
  • Zoltán Somogyvári: Senior Research Fellow

    mmn_comp mmn_comp

    mmn_comp

References

  • Iyer, Parameswaran Mahadeva, et al. "Mismatch negativity as an indicator of cognitive sub-domain dysfunction in amyotrophic lateral sclerosis." Frontiers in neurology 8 (2017): 395.
  • Näätänen, Risto, et al. "The mismatch negativity (MMN) in basic research of central auditory processing: a review." Clinical neurophysiology 118.12 (2007): 2544-2590.
  • Amado, Catarina, and Gyula Kovács. "Does surprise enhancement or repetition suppression explain visual mismatch negativity?." European Journal of Neuroscience 43.12 (2016): 1590-1600.
  • Epstein, Russell A., Whitney E. Parker, and Alana M. Feiler. "Two kinds of fMRI repetition suppression? Evidence for dissociable neural mechanisms." Journal of Neurophysiology 99.6 (2008): 2877-2886.
  • Arnal, Luc H., and Anne-Lise Giraud. "Cortical oscillations and sensory predictions." Trends in cognitive sciences 16.7 (2012): 390-398.
  • Bastos, Andre M., et al. "Canonical microcircuits for predictive coding." Neuron 76.4 (2012): 695-711.
  • https://www.myndlift.com/single-post/2018/01/23/How-Does-Our-Brain-Work-1
Kristóf Furuglyás, Eötvös Loránd University
Theoretical Physics Seminar, 2019 Fall

Thank you for your attention!


elte_log wigner_log

In [ ]: